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ABSTRACT

This paper reports on our experience implementing a technique

for sifting through static analysis reports using dynamic symbolic

execution. Our insight is that if a static analysis tool produces a

partial trace through the program under analysis, annotated with

conditions that the analyser believes are important for the bug

to trigger, then a dynamic symbolic execution tool may be able

to exploit the trace by (a) guiding the search heuristically so that

paths that follow the trace most closely are prioritised for explo-

ration, and (b) pruning the search using the conditions associated

with each step of the trace. This may allow the bug to be quickly

confirmed using dynamic symbolic execution, if it turns out to be a

true positive, yielding an input that triggers the bug.

To experiment with this approach, we have implemented the idea

in a tool chain that allows the popular open-source static analysis

tools Clang Static Analyzer (CSA) and Infer to be combined with

the popular open-source dynamic symbolic execution engine KLEE.

Our findings highlight two interesting negative results. First, while

fault injection experiments show the promise of our technique,

they also reveal that the traces provided by static analysis tools are

not that useful in guiding search. Second, we have systematically

applied CSA and Infer to a large corpus of real-world applications

that are suitable for analysis with KLEE, and find that the static

analysers are rarely able to find non-trivial true positive bugs for

this set of applications.

We believe our case study can inform static analysis and dynamic

symbolic execution tool developers as to where improvements may

be necessary, and serve as a call to arms for researchers interested

in combining symbolic execution and static analysis to identify

more suitable benchmark suites for evaluation of research ideas.
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1 INTRODUCTION

Static analysis is a popular method for assisting developers in build-

ing correct and secure software. Despite the wide availability of

static analysis tools, e.g. open source tools such as the Clang Static

Analyzer [14], Frama-C [23] and Infer [10], and commercial offer-

ings such as CodeSonar [29], Coverity Scan [16] and Fortify [22],

many projects still disregard these tools due to incorrect bug re-

ports, known as false positives. The more time developers waste

investigating reports that turn out to be false positives, the more

likely they are to abandon using a static analysis tool in the future.

We report our experience designing and evaluating a technique

that aims to automate the process of confirming potential bugs re-

ported by static analysis. If successful, such a technique could make

static analysers more useful in practice by reducing the amount

of time that would need to be spent triaging reports of potential

bugs. Given a bug report from a static analysis tool, our idea is to

use dynamic symbolic execution (DSE) [9] to try to automatically

generate an input that triggers the reported bug.

Suppose a static analyser reports a possible bug at a given pro-

gram location. The analyser typically yields a trace providing (pos-

sibly incomplete) details of a path through the program that, if

followed, might trigger the bug. Our idea is to then apply a DSE

tool to the program, additionally providing the DSE tool with infor-

mation related to the trace. Rather than attempting to explore all

paths of the program in the hope of finding some bug, the DSE tool

exploits the trace to explore a massively-pruned subset of paths

that agree with the trace, with the aim of confirming the specific
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bug reported by the static analyser. Our hypothesis is thatÐif the

bug turns out to be a true positiveÐthe DSE tool may be able to

confirm the bug, producing an associated triggering test case, more

efficiently than if it were run on the program in a default, undirected

fashion. If the DSE tool is unable to trigger the bug then we still do

not know whether the bug report is a true or a false positive, but

the DSE tool might be able to produce an input that partly matches

the bug report by following the trace as closely as possible, which

might help to inform further manual analysis.

We present a practical implementation of our ideas for the popu-

lar open-source static analysis tools Clang Static Analyzer (CSA) [14]

and Infer [10] and the popular open-source dynamic symbolic exe-

cution engine KLEE [6]. We have implemented several strategies

for using the static analysis error trace as guidance during symbolic

execution, and propose a novel search heuristic that prioritises

exploration of paths that follow the trace.

Evaluating these ideas has led to two interesting negative results.

The first negative result relates to our investigation of the potential

for our technique to help in confirming real-world bugs detected

by CSA and Infer. Unfortunately, a large and systematic survey of

available C/C++ applications to which KLEE can be readily applied

reveals that these analysers either do not find any bugs, report

almost exclusively false positives, or only find kinds of bugs that

KLEE has not been designed to detect (such as resource leaks or

redundant writes to variables). This negative result prevents us

from evaluating our technique on real-world bugs, but our survey

constitutes an important empirical contribution: developers of static

analysis tools can use our findings as a starting point for refining

their techniques, and our experience can serve as a call to arms for

researchers interested in combining symbolic execution and static

analysis to identify more suitable realistic benchmarks.

In lieu of suitable real-world examples, we present a rigorous

evaluation of our technique using a set of 55 synthetic bugs injected

into benchmarks from the GNU Coreutils suite [26]Ða de facto stan-

dard for evaluating DSE tools. While our results show the promise

of our approachÐwith KLEE able to find this set of bugs 4.13 times

faster (from a total of 2076.80 minutes down to only 503.24 min-

utes) when using static analysis guidance than when running in its

default modeÐit also highlights an interesting negative result. Most

of the time, using solely the bug location as guidance is as effective

as using the entire trace. This suggests that trace information is not

very useful, and improving trace quality could benefit techniques

like the one we are proposing. One hypothesis is that since static

analysis tools are not evaluated based on their traces, relatively

little attention has been paid to their quality.

In summary, our main contributions are:

(1) A technique that aims to convert a potential bug reported by a

static analyser into a concrete test input that triggers the bug,

via a form of dynamic symbolic execution restricted to explore

only those paths that agree (or mostly agree) with the trace

generated by static analysis.

(2) An implementation of this technique using two popular open-

source static analysis tools, the Clang Static Analyzer (CSA) [14]

and Infer [10], and an extension to the KLEE [6] open-source

dynamic symbolic execution engine.

(3) Two negative results that could act as a call for arms for re-

searchers working on static analysis or the combination of

static analysis and dynamic symbolic execution: the fact that

these static analysers cannot detect non-trivial bugs on bench-

marks that can be analysed via symbolic execution; and the

fact that, when applied to a collection of synthetic bugs, the

full error traces produced by these static analysis tools are not

much more useful than merely the location of the bug, with

respect to accelerating symbolic execution.

(4) A complete artefact [32, 33] containing our implementation and

benchmarks for reproducibility.

2 BACKGROUND

We provide necessary background on static analysis, dynamic sym-

bolic execution, and the Clang Static Analyzer, Infer and KLEE tools

used in our case study. Figure 1a is a contrived example featuring a

bug that we use to illustrate these techniques: a use-after-free bug

on line 48 is triggered when all of the following conditions hold:

y < 10, x > 10, x is odd. In this case, n2 is aliased to n1 and is freed

at line 47. The bug is that n2 is dereferenced on the next line.

2.1 Static Analysers and Traces

In order to scale, static analyses typically over-approximate parts

of the information computed about the program under analysis.

Over-approximation may lead to a static analyser reporting false

positivesÐreported program defects that are not possible in practice.

We focus on static analysers that report potential bugs in the

form of a trace. A trace is a finite sequence of steps 𝜎1, 𝜎2, . . . , 𝜎𝑛
leading to the reported bug. Each step 𝜎𝑖 is a tuple ⟨source-location,

message⟩. Here, source-location typically captures the file, line and

column associated with the step. The file name is important as the

trace could hop over multiple files. Information computed by the

static analyser on conditions that must hold to reach the bug in

the source code are captured in message. Table 1 provides the list

of messages generated by a typical static analyser for C programs

which can be used to reconstruct the path to the bug.

Table 1: Trace message types generated by a typical static

analyser that can be used to recover the path to the bug.

Type Message

Branch Take true/false branch

Switch Control should jump to case ⟨case-info⟩

Constraining a variable Assume ⟨var⟩ is equal to ⟨constant⟩/⟨var2⟩

Clang Static Analyzer (CSA) [14] is a lightweight source code

analysis tool that finds bugs in C, C++, and Objective-C programs.

CSA performs interprocedural analysis, but is restricted to a single

translation unit.1 Any call to a function outside the translation unit

is over-approximated. The analyser can identify defects such as

division by zero, null pointer dereferences, usage of uninitialised

values, and dead code. Since the analysis is restricted to a single file,

the source-location component of a trace step omits the file name.

1We were recently made aware of CodeChecker, a new extension of CSA with
cross-translation unit analysis [15]; we have not yet integrated it with our approach.
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1 #include <stdlib.h>

2 #include <stdio.h>
3
4 typedef struct node {

5 int val;

6 struct node *next;

7 } Node;
8
9 Node* create () {

10 return (Node*)

11 malloc(sizeof(Node ));
12 }
13
14 void myfree(Node **n) {

15 free(*n);
16 *n = NULL;
17 }
18
19 int main() {

20 Node *n1, *n2;

21 n1 = create ();

22 n1->val = 10;

23 n2 = create ();

24 n2->val = 5;

25 int y, i = 0;

26 scanf("%d", &y);
27
28 while (y < 10) {

29 int x;

30 scanf("%d", &x);
31
32 while (x > 10) {

33 i++;

34 if (i > 4)

35 x += i;

36 else
37 x -= i;
38
39 if (x % 2 == 0)
40 n2 = n1;
41 }
42
43 y += x;
44
45 }
46
47 myfree (&n1);

48 printf("%d", n2->val);

49 myfree (&n2);
50 }

(a) Program with use-

after-free bug on line 48.

4 Assuming 'y' is < 10

5 Loop condition is true.  Entering loop body

13 Assuming 'y' is >= 10

14 Loop condition is false. Execution continues on line 46

6 Assuming 'x' is > 10

7 Loop condition is true.  Entering loop body

11 Assuming 'x' is <= 10

12 Loop condition is false. Execution continues on line 43

8 Taking false branch

9 Assuming the condition is true

10 Taking true branch

15 Calling 'myfree'

17 Returning; memory was released

18 Use of memory after it is freed

28 while (y < 10) {

29 int x;

30 scanf("%d", &x);

32 while (x > 10) {

33 i++;

34 if (  > 4)

35 x += i;

36 else

37 x -= i;

39 if (x % 2 == 0)

40 n2 = n1;

41 }

43 y += x;

44 }

46 myfree(&n1);

47 printf("%d", n2->val);

48 myfree(&n2);

i

(b) (partial) CSA generated trace

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include "inst -clang.c"

4 typedef struct node {

5 int val;

6 struct node *next;

7 } Node;
8
9 Node* create () {

10 return (Node*)

11 malloc(sizeof(Node ));
12 }
13
14 void myfree(Node **n) {

15 free(*n);
16 *n = NULL;
17 }
18
19 int main() {

20 Node *n1, *n2;

21 n1 = create ();

22 n1->val = 10;

23 n2 = create ();

24 n2->val = 5;

25 int y, i = 0;

26 scanf("%d", &y);
27
28 while (INSTR_LINE_28(y < 10)) {

29 int x;

30 scanf("%d", &x);
31
32 while (INSTR_LINE_32(x > 10)) {

33 i++;

34 if (INSTR_LINE_34(i > 4))

35 x += i;

36 else
37 x -= i;
38
39 if (INSTR_LINE_39(x % 2 == 0))
40 n2 = n1;
41 }
42
43 y += x;
44
45 }
46
47 myfree (&n1);

48 printf("%d", n2->val); INSTR_LINE_48(true);

49 myfree (&n2);
50 }

1 #include "klee/klee.h"
2
3
4 int INSTR_LINE_28(bool COND)
5 {

6 assume_sa(6, !COND);

7 assume_sa(1, COND);
8 return COND;
9 }
10
11
12 int INSTR_LINE_32(bool COND)
13 {

14 assume_sa(5, !COND);

15 assume_sa(2, COND);
16 return COND;
17 }
18
19
20 int INSTR_LINE_34(bool COND)
21 {

22 assume_sa(3, !COND);
23 return COND;
24 }
25
26
27 int INSTR_LINE_39(bool COND)
28 {

29 assume_sa(4, COND);
30 return COND;
31 }
32
33
34 void INSTR_LINE_48(COND)
35 {

36 assume_sa(7, COND);
37 }

(c) CSA-driven instrumented code

Figure 1: Bug report generated by CSA for the motivating example in Figure 1a and the instrumented source code.

Figure 1b provides the HTML view of a partial trace generated

by CSA when applied to the running example of Figure 1a. Ta-

ble 2 shows the trace generated by CSA for this example, ignoring

information-only messages (e.g. message 4 of Figure 1b), so that

Step 1 of Table 2 corresponds to message 5 of Figure 1b.

Step 1: The condition of the outer while loop on line 28 is true.

Step 2: The condition of the inner while loop on line 32 is true.

Step 3: The if condition on line 34 is false indicating that i ≤ 4.

Step 4: The if condition on line 39 is true indicating that x is even

at line 39. As a result, n2 is now a copy of n1 and points to

the same object as n1.

Steps 5ś6: The conditions of the two while loops on lines 32 and

28 are false. Thus, the trace involves only a single iteration

of both while loops.

Step 7: Access of the val field of n2 at line 48. The object pointed

by n1 is freed at line 47, thereby freeing the object pointed

by n2 because n1 and n2 are aliases.

Infer [10] is an automated analyser for C, C++, Objective-C and

Java programs. In the context of C, C++, and Objective-C, Infer

checks e.g. for null-pointer dereferences, memory leaks or coding

conventions. For scalability, Infer uses a compositional interproce-

dural analysis, which is sound with respect to the underlying model

of separation logic [11]. Unlike CSA, the interprocedural analysis

is not restricted to a single translation unit, thus a trace can span

multiple source files.

When run on the example in Figure 1a, Infer does not find the use-

after-free bug with the default options, nor the extended ones that

we use in our experiments. However, with options –no-filtering

Table 2: Trace generated by CSA (ignoring steps that do not

affect the control flow) for the example in Figure 1a.

Step no. Line no. Message

1 28 Loop condition is true

2 32 Loop condition is true

3 34 Taking false branch

4 39 Taking true branch

5 32 Loop condition is false

6 28 Loop condition is false

7 48 Use-after-free error

–pulse –pulse-model-return-nonnull=malloc, it finds the use-

after-free bug, together with a memory leak (caused by reassigning

n2 in line 40) and two null-pointer dereferences (triggered if the

allocations fail).

Infeasible traces. Static analysers sometimes generate infeasi-

ble traces and we observed this for both CSA and InferÐhere we

provide an example for Infer to illustrate the problem. Figure 2a

shows a simplified version of Figure 1a and Figure 2b an associated

trace generated by Infer. Infer claims to have found a memory leak

at the exit of the main function, which is a false positive as n1 is al-

ways freed and n2 is either uninitialised or an alias of n1. Moreover,

the trace itself leads to an infeasible path condition in Step 6:

Step 1: The condition of the while loop at line 27 is true, i.e. x > 10.

Step 2: The if condition at line 30 is false, indicating that i is odd.
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1 #include <stdlib.h>

2 #include <stdio.h>
3
4 typedef struct node {

5 int val;

6 struct node *next;

7 } Node;
8
9 Node* create () {

10 return (Node*)

11 malloc(sizeof(Node ));
12 }
13
14 void myfree(Node **n) {

15 free(*n);
16 *n = NULL;
17 }
18
19 int main() {

20 Node *n1, *n2;

21 int x, i = 0;

22 scanf("%d", &x);
23
24 n1 = create ();

25 n1->val = 10;
26
27 while (x > 10) {

28 i++;
29
30 if (i % 2 == 0)

31 x += i;

32 else
33 x -= i;
34
35 if (x % 2 == 0)
36 n2 = n1;
37 }
38
39 myfree (&n1);

40 return n2->val;
41 }
42

(a) Source code

"bug_type": "MEMORY_LEAK",

"qualifier": "memory dynamically allocated is

not reachable after line 40",

"file": "infer.c",

"bug_trace": [
{

"filename": "infer.c",

"line_number": 27,

"description": "Loop condition is true.

Entering loop body"
},
{

"filename": "infer.c",

"line_number": 30,

"description": "Taking false branch"
},
{

"filename": "infer.c",

"line_number": 35,

"description": "Taking true branch"
},
{

"filename": "infer.c",

"line_number": 27,

"description": "Loop condition is true.

Entering loop body"
},
{

"filename": "infer.c",

"line_number": 30,

"description": "Taking true branch"
},
{

"filename": "infer.c",

"line_number": 35,

"description": "Taking false branch"
},
{

"filename": "infer.c",

"line_number": 27,

"description": "Loop condition is false.

Leaving loop"
}

]

(b) (partial) Infer trace

Figure 2: Inconsistent trace generated by Infer. We show only

steps whose message types are listed in Table 1. Steps with

other message types are filtered out when the trace is parsed

for relevant information.

Step 3: The if condition at line 35 is true, indicating that x is even

at line 35. Thus, x was odd at the start of the while loop and

because of the decrement by 1 at line 33, it became even.

Step 4: The condition of the while loop at line 27 is true, i.e. x > 10,

even after the decrement in the previous iteration.

Step 5: i is now even and the true branch at line 30 is taken.

Step 6: Requires the if condition at line 35 to be false, indicating

that x is odd in the second iteration of the while loop.

Step 7: Termination of the while loop.

Step 6 is inconsistent with the earlier steps. At the end of the

first iteration of the while loop, x is even and i is odd. In the second

iteration, i is incremented by 1 at line 28 and x is incremented i

times at line 31. The addition of two even integers is an even integer

and hence the condition at line 35 should be true which contradicts

with Step 6 in the trace.

2.2 Dynamic Symbolic Execution

A dynamic symbolic execution (DSE) tool attempts to explore all

paths in the program that depend on symbolic inputs [6ś8, 27,

44]. Programs are explored in a path-by-path manner, building

up per-path constraints reflecting the guards that have been tra-

versed. DSE relies on an underlying constraint solver to determine

whether paths are feasible, whether reachable assertions can fail,

and whether other dangerous operations, such as divisions and

array accesses, can lead to runtime errors. An advantage of DSE

is that it can automatically generate test inputs that trigger such

bugs, or more generally test inputs that achieve high code cover-

age. We implement and evaluate our approach using the widely

used dynamic symbolic execution tool KLEE [6, 40]. KLEE uses a

space-efficient representation of program paths to allow thousands

of paths to be stored simultaneously in memory, employs novel

constraint solving optimisations to achieve high performance, and

uses a number of search heuristics to select paths in an effective

manner.

To use KLEE on our motivating example in Figure 1a, we need to

replace the scanf calls with calls to a special function that marks

each of x and y as symbolic. KLEE will then systematically ex-

plore paths in this program, creating (łforkingž) new paths at every

condition that depend on the symbolic inputs. In the default con-

figuration, KLEE explores 17 paths to find the bug.2

3 TRACE-DRIVEN INSTRUMENTATION

Our key idea is to instrument the program under test using informa-

tion from the trace generated by a static analyser (SA) such that a

dynamic symbolic execution (DSE) tool can exploit the information

to quickly confirm the reported bug, if it is indeed a true positive.

We discuss the interface between the results of SA and DSE

(ğ3.1), various instrumentation strategies (ğ3.2), and a novel DSE

search heuristic that takes advantage of the instrumentation (ğ3.3).

3.1 Interface between SA and DSE

To communicate the trace information produced by SA to DSE,

we define an intrinsic function called assume_sa (the sa stands for

łstatic analyserž), which is interpreted specially during symbolic

execution. The function assume_sa takes two arguments: (a) a step

number indicating the step in the SA trace with which the call is

associated, and (b) a condition on the program state that the SA

believes should hold at this step of the trace in order for the bug

to trigger. The step number is necessary because there could be

multiple steps associated with a given location, e.g. a loop header

could have two associated steps, describing the conditions that

should hold on entering and exiting the loop.

For our running example in Figure 1a, considering the CSA trace

described in Table 2, our approach automatically instruments the

program as shown in Figure 1c. At the locations specified by the SA

trace, the instrumentation inserts calls to helper functions with pre-

fixes INSTR, for instance INSTR_LINE_28(y < 10) on line 28. The

body of each helper function contains a series of calls to assume_sa

corresponding to the steps associated with that location in the

source code. For instance, INSTR_LINE_28(y < 10) is associated

with two messages on line 28 (see Table 2), which specify that

in Step 1 of the trace, the condition of the while loop is true (i.e.

y < 10). However, when the while loop terminates in Step 6 its

condition is false and y ≥ 10. A final call is inserted after the bug

location (printf) to mark the end of the trace. In general, a helper

function INSTR_LINE_xx takes one argument, a boolean condition

COND that needs to hold at that step.

We now explain how the injected calls to assume_sa can be used

to constrain the paths explored during DSE (ğ3.2), and how paths

are selected to reach the potential bug location efficiently (ğ3.3).

2The number of paths explored by KLEE is sensitive to the LLVM/KLEE/runtime
versions and compilation flags.
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3.2 Constraining Search via assume_sa

An assume_sa (step, condition) call means that the SA believes

that the error of interest can be reached when condition holds

at step of the trace. There is potential for pruning the space of

paths to be explored by DSE by restricting attention to only those

paths where these conditions really do hold. However, if the SA is

incorrect then the search may be overly-constrained, risking the

bug being missed if it is indeed a true positive.

We present three strategies for constraining the search using

assume_sa conditions: Ignore, Require, and Try.

Ignore Calls to assume_sa are ignored. This provides a useful

baseline against which to compare other strategies. The coverage-

guided search performed by DSE can be sensitive to the exact

syntactic structure of the input program, so that even syntactic in-

strumentation can affect DSE performance [5]. The Ignore strategy

allows us to compare DSE performance against other strategies

with respect to syntactically-identical programs.

Require DSE exploration requires all the encountered conditions

to hold, and adds them to the path condition. Any path for which

an encountered condition is infeasible is terminated.

Try This strategy is more liberal than Require. It prunes the search

based on feasible conditions by adding them to the path condition,

and acts like a no-op when conditions are infeasible.

On our running example of Figure 1a, using KLEE with the

guidance provided by CSA leads to the following results for each

strategy: 11 paths with the Ignore strategy (no guidance) to find the

bug, and 1 path by using the Require and Try strategies.

When KLEE uses the inconsistent trace generated by Infer for

the example in Figure 2a, it explores 2 paths with the Ignore strategy

to find the bug, fails to find the bug with the Require strategy, due

to the Infer trace featuring mutually inconsistent conditions, and

explores 2 paths with the Try strategy to find the bug, because the

inconsistency is ignored. ğ5 provides an in-depth comparison of

the effectiveness of these strategies in practice.

3.3 Guiding Search to Follow the Trace

The Require and Try strategies presented above enable DSE to filter

out paths that do not satisfy the conditions given by the SA trace.

However, this still allows DSE to explore many irrelevant paths: the

locations in the adjacent steps of a trace are often at a considerable

distance from one another, so that DSEmay have to exploremultiple

paths to reach the next step, and may reach locations from which

the next step is actually unreachable. Moreover, some DSE search

heuristics tend to create a shallow but wide exploration tree [6],

meaning that many, possibly redundant paths are explored and DSE

may fail to reach the target due to state explosion.

We propose a new search heuristic, which we call the Targeted

search heuristic. The Targeted heuristic on one hand terminates all

paths for which the last step of the trace is unreachable and, on the

other hand, guides the exploration along the trace. To follow the

trace, our heuristic first prioritises further exploration of states that

have already reached the largest number of consecutive steps of the

SA trace. If there are multiple such states, it prioritises those whose

current program point is closest to the program point associated

with the next step in the SA trace. The idea of this heuristic is to

Algorithm 1: Targeted search heuristic

Data: activePathIDs : 𝑆𝑡𝑒𝑝 → {𝑃𝑎𝑡ℎ𝐼𝐷 }

Data: states : 𝑆𝑡𝑒𝑝 × 𝑃𝑎𝑡ℎ𝐼𝐷 → {𝑆𝑡𝑎𝑡𝑒 }

Data: instructionPathIDs : 𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 × 𝑆𝑡𝑒𝑝 → 𝑝𝑎𝑡ℎ𝐼𝐷

Data: maxActiveStep: maximum step number among states

Data: maxStep: maximum step number in program

1 Function update(currentState, newStates, terminatedStates):

2 updateCurrent (currentState)

3 foreach state : newStates do

4 insert (state)

5 foreach state : terminatedStates do

6 remove (state)

7 Function insert(state):

8 state.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← computeDistance(state)

9 if state.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∞ then

10 while state.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∞∧ state.𝑙𝑎𝑠𝑡𝑆𝑡𝑒𝑝 < maxStep do

11 state.𝑙𝑎𝑠𝑡𝑆𝑡𝑒𝑝 ← state.𝑙𝑎𝑠𝑡𝑆𝑡𝑒𝑝 + 1

12 state.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← computeDistance(state)

13 state.𝑝𝑎𝑡ℎ𝐼𝐷 ←

instructionPathIDs[state.𝑝𝑐 ] [state.𝑙𝑎𝑠𝑡𝑆𝑡𝑒𝑝 ]

14 if state.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ∞ then

15 terminate(state)

16 else

17 states[state.𝑙𝑎𝑠𝑡𝑆𝑡𝑒𝑝 ] [state.𝑝𝑎𝑡ℎ𝐼𝐷 ] .add(state)

18 activePathIDs[state.𝑙𝑎𝑠𝑡𝑆𝑡𝑒𝑝 ] .add(state.𝑝𝑎𝑡ℎ𝐼𝐷 )

19 Function select()→ 𝑆𝑡𝑎𝑡𝑒 :

20 nextPathID←

activePathIDs[maxActiveStep] .selectRoundRobin( )

21 candidates←

states[maxActiveStep] [nextPathID] .selectByDistance( )

22 return candidates.pickRandomly( )

push forward exploration of those states that have already followed

a substantial prefix of the SA trace in the hope that it may be

possible to continue to follow the trace, improving the chances of

confirming the possible bug to which the trace corresponds.

The next step in a trace might be reachable via different paths

in the call graph, simply because it is located in a function that is

called from different program points. Prioritising only a single call

path with the shortest distance might prevent DSE from reaching

this step as necessary path constraints to reach the correct branch

might only be fulfilled on other call paths. We refine our search

heuristic to circumvent this by introducing path identifiers. Path

identifiers enumerate all unique (sub-)paths in the interprocedural

control flow graph to a step and allow us to partition the state space

such that states with shortest distances can be selected for each

individual call path. For example, suppose a trace step is located

in some function 𝐴, and that function 𝐵 makes three calls to 𝐴:

two calls in different branches of a switch statement and one call

at the end of the function body. Each of the two switch statement

branches that call 𝐴 would get a unique path identifier, and the

remaining code-paths to the function return with the third call of𝐴

would get a (single) unique path identifier. It is important to notice

that this approach identifies a small number of call paths and not a

possibly significant number of program paths.
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As shown in Algorithm 1, a search heuristic implements two

functions: an update function to accommodate the progress of

the DSE engine, and a select function to pick a new state for

exploration. More concretely, update inserts newly forked states

into and removes terminated states from internal data structures.

Additionally, data structures have to be updated when the last

selected (current) state gets closer to or reaches its next step, or

progresses into a path with a different identifier. We leave out

the description for the less interesting remove and updateCurrent

functions and focus on insert. On insertion, the distance of a

state to its next step gets computed. If the next step is unreachable

(line 9), adjacent steps are evaluated until a reachable step is found

(lines 10-12). If no such step can be found, the state is terminated

(line 15). Otherwise, the state’s path identifier is set, based on the

current program counter (instruction) and the next targeted step

(line 13), before it is inserted into the partitioned state set (line 17)

and the set of active path identifiers is updated. Early experiments

indicated that skipping unreachable steps and allowing more states

to advance reduces the time needed to cover the final target.

When selecting a state for further exploration, only the ones with

the highest current step number are considered. Such states might

progress to the next step on different call paths as described above,

hence one of such paths is selected in round-robin manner (line 20).

After selecting a candidate set of states with shortest distance to

the next step on the previously selected path (line 21), a single one

is chosen randomly for further exploration (line 22).

The distance computation itself is similar to coverage-guided

heuristics in other DSE engines with the subtle but important dif-

ference that we use maximum distances through functions. Us-

ing maximum distances to approximate shortest distances may

seem counter-intuitive at first and contradicts other implementa-

tions [6, 24] but is based on a phenomenon we observed during

development: Many functions in real-world code use early returns,

for instance for error handling, and have very short shortest paths.

Now, when a state enters a function and does not take the short

error path, its distance value gets re-computed and would increase

when the calculation would be solely based on minimum distances.

States that have not called this function yet might have a shorter

distance now, causing the search heuristic to pick those states and

pulling them into the function as well. This łherd-effectž can sim-

ply be prevented by using maximum distances with monotonically

decreasing distance values for non-looping code.

4 INVESTIGATING REAL-WORLD BUGS

In order to evaluate our technique, we sought a set of C/C++ applica-

tions suitable for analysis with KLEE, and also containing bugs that

could be found by either CSA or Infer.We approached this by collect-

ing all applications used in the evaluation sections of the 12 most re-

cent KLEE-related papers listed at http://klee.github.io/publications/

at the time of writing. We excluded applications that were only

usable in the context of an extension of KLEE being presented in

a specific paper (e.g. the Linux kernel), as well as tiny benchmark

programs. The applications considered are listed in Table 3. It is

likely that many of these applications were not just tested with

symbolic execution engines but also with static analysis tools in the

past, so that they might have contained bugs that could have been

found via static analysis but that have since been fixed. Therefore,

we chose older releases of these applications from around June

2015Ðwhen Infer was released as open source. We ran both CSA

and Infer on these applications, and manually investigated the bug

reports from these tools to determine whether or not they were

false positives.

All experiments were performed using CSA v.11.0.1 [14] and

Infer v.1.0.0 [10], using the default options of both tools. We also

tried running Infer with an extended set of options3 to increase

its ability to find real bugs. However, with these options we often

got a huge number of reports (e.g. in the thousands). Analysis of a

sample of these reports suggested a high false positive rate, making

manual analysis of even a sizeable subset of the reports infeasible.

We thus reverted to using Infer’s standard options.

Table 3 shows the number of reports generated for each appli-

cation by both static analysers for the memory-related bug classes

that KLEE also supports. We investigated up to 20 reports per appli-

cation and manually categorised them into true and false positives.

Almost all reports turned out to be false positives. The few true

positives are either in library functions that are not reachable via

the main application, depend on failing system calls or are caused

by missing error handling code for memory-allocating functions.

Bugs that depend on failing system calls are typically unreachable

for KLEE as it only models few such failures and does not model

out-of-memory scenarios. Furthermore, these bugs are often trivial

to confirm, as they locally depend on the environment behaviour

rather than the application input.

As this did not yield any usable bugs, we turned our focus to

CoREBench [3], a collection of 70 complex regression errors that

were systematically extracted from the repositories and bug reports

of four open-source software projects: GNUMake, GNU Grep, GNU

Findutils, and GNUCoreutils. For each error, it provides information

about the commit that introduced the error, the commit that fixed

it, and a validating test case. We analysed all error-introducing

commits with CSA and Infer, and evaluated whether KLEE is able

to detect the respective bug by using its test case as concrete input.

KLEE found 17 bugs from a list of 70 regression errors. The relatively

low detection rate is due to the fact that CoREBenchmostly contains

functional errors, such as correct output colouring, which KLEE

cannot detect without extra oracles.

Unfortunately, none of the bugs detected by KLEE were reported

by CSA or Infer. In turn, CSA reports 142 potential bugs across all

the versions of the four projects, while Infer reports 171 bugsÐnone

of these are known bugs and are not reported by CoREBench or

KLEE. We manually checked a few of these and found that they are

false positives. To investigate the full set of reports, we instrumented

the source code (Try strategy) using the trace generated by the bug

reports of CSA and Infer and ran KLEE on the instrumented code

with the Targeted searcher described in ğ3.3. For 18 of the CSA

reports and 8 of the Infer reports, KLEE terminated without finding

the bug within 30 minutes. This indicates that either the trace is

incorrect, the report is a false positive or KLEE could not find the

bug due to its configuration (e.g. insufficient symbolic input). For

the remaining 124 CSA reports and 163 Infer reports, KLEE either

3–pulse –no-filtering –no-default-checkers –bufferoverrun –headers

–biabduction -j 1
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Table 3: Examined applications and static analysis reports.

We investigated up to 20 reports per application for each

analyser but found only true positives caused by trivial allo-

cation errors or failing system calls.

Relevant reports False positives True positives

Application Release CSA Infer CSA Infer CSA Infer

APR 1.5.2 8 2 8 2 0 0

flex 2.5.39 13 17 12 7 1 10

awk 4.1.2 124 70 20 20 0 0

bc 1.06 11 0 11 0 0 0

Binutils 2.25.1 0 38 0 14 0 6

combine 0.4.0 1 10 1 10 0 0

Coreutils 8.24 25 5 20 5 0 0

datamash 1.0.6 0 1 0 1 0 0

Diffutils 3.3 6 0 6 0 0 0

Findutils 4.4.2 6 2 6 1 0 1

grep 2.21 20 8 20 8 0 0

Gzip 1.6 1 0 0 0 1 0

Libtasn1 4.5 1 4 1 1 0 3

M4 1.4.17 9 2 8 2 1 0

Make 4.1 3 2 3 2 0 0

oSIP 4.1.0 1 6 1 6 0 0

sed 4.2 6 7 3 7 3 0

Trueprint 5.4 0 7 0 6 0 1

ImageMagick 6.9.4-8 10 11 10 3 0 8

JasPer 1.900.1 9 3 9 1 0 2

libjpeg 9a 17 2 17 2 0 0

LibTIFF 3.9.7 6 12 6 3 0 9

libxml2 2.9.2 33 91 20 20 0 0

tcpdump 4.7.4 0 2 0 0 0 2

Vorbis Tools 1.4.0 1 19 1 1 0 18

timed out or ran out of memory without finding the bug. While

these results do not allow us to draw a definite conclusion, the

fact that no bugs were confirmed as true positives, and our manual

assessment that several reports were indeed false positives, suggests

that CSA and Infer are either not effective at finding real-world

bugs on these benchmarks, or they create incorrect or useless traces

to real bugs.

Recently, Joshy et al. [31] applied two commercial static analysers

to BugBench [36] and CoREBench. From the generated reports,

their proposed LCA-patching approach was able to confirm 48 true

positives. None of them were listed as bugs by either BugBench or

CoREBench. Consequently, we ran CSA and Infer on the same set of

applications,4 released between 2002 and 2010, but none of the bug

locations for the true positives were reported. However, by using

non-default flags for Infer, four reports were generated with bug

locations at the same line as the true positives. We have not yet had

time to investigate these cases further, but plan to do so in future

work. This again illustrates the challenge of using static analysis,

as the likely true positives are hidden among 7434 reports and only

shown when the SA is configured to be less precise. Also, with such

a huge number of reports, running our proposed approach would

take on the order of days or weeks using a regular machine.

Finally, we considered reproducing previous bugs found by CSA

and Infer, but could not find a list of historical bugs found by CSA,

4In fact, we analysed 4 out of 7 applications as we could not create a working
build environment for Coreutils and Squid (no AMD64 support) on a recent machine.

while documented bugs found by Infer are mostly in Java code. A

set of 15 null dereference bugs in a C application, OpenSSL, are

documented as having been found previously by Infer (documented

at [21]), but are not detected by the latest version of Infer.

Despite a systematic investigation and a large amount of manual

effort, we were unable to find a suitable set of real-world bugs on

which to evaluate our technique. To our surprise, CSA and Infer

are limited in their ability to find genuine bugs in the corpus of

applications that tend to be used for DSE evaluations, and the kinds

of bugs they can find are often not the types of bugs that KLEE is

capable of analysing.

We hope that developers of static analysis tools may find this

negative result useful: perhaps there is scope for refining their tools

so that they exhibit a higher ratio of true to false positives in the

domain of these applications, though of course this needs to be

traded against the requirements of the applications that the core

users of these tools are interested in. At the same time, our results

could also be of interest to DSE researchers, who could develop

better techniques for guiding execution along a trace, thus reducing

the number of inconclusive cases, or extend their tools to support

more bug types. Finally, our experience may also serve as a call

to arms for researchers interested in combining dynamic symbolic

execution and static analysis to work together on a set of suitable

benchmarks that exhibit non-trivial bugs that are nevertheless in

scope for detection with both kinds of techniques.

5 EVALUATION ON INJECTED BUGS

Having established (ğ4) that it is not straightforward to find real-

world C/C++ benchmarks suitable for analysing the combination of

current state-of-the-art static analysis and dynamic symbolic execu-

tion tools (irrespective of the technique proposed in this paper), we

turn our attention to systematically evaluating our idea based on

injecting faults into real-world applications. Injected faults are less

appealing than real-world bug reports, but do allow us to conduct

a large-scale evaluation of our technique, and are not subject to the

limited abilities of CSA and Infer when it comes to finding defects

in the kinds of code bases to which KLEE can be readily applied.

Our fault-injection experiments were performed in Docker con-

tainers running Ubuntu 18.04 on a set of homogeneous machines

with Intel Core i7-4790 CPUs at 3.6 GHz and 16GiB of RAM. We

used CSA v.11.0.1 [14], Infer v.1.0.0 [10], and a fork of KLEE branched

from Git revision 04f5031c, configured to use LLVM 11.0.1 [34]

and Z3 4.8.8 [18] as constraint solver. As timeouts we used 2 h for

KLEE and 1min for solver invocations.

To increase Infer’s bug detection rate, we used the extended

options discussed in ğ4 (see Footnote 3).

5.1 Benchmark Selection

As benchmarks for our fault-injection experiments, we choose the

tools from GNU Coreutils 8.31 [26]. These tools contain commonly

used command-line utilities on UNIX-based systems, such as ls,

mkdir and echo. Since being introduced in the original KLEE pa-

per [6], they have become de facto DSE benchmarks.

From the set of 106 Coreutils we excluded all utilities that can

interfere with the test setup (e.g. kill, chmod), contain unsupported

LLVM intrinsics (e.g. sha256sum), cause an assertion in KLEE’s Z3
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front-end (e.g. ptx), are very similar to other tools (e.g. base32 is

very similar to base64) or can be fully explored using KLEE in less

than 2 h on our test platform and thus can be considered as easy

targets for KLEE-based bug finding (e.g. [).

We restricted the remaining 75 applications to a subset for which

KLEE produced reasonably deterministic results. This was impor-

tant to avoid the possibility of misattributing performance results

to the success or otherwise of our technique when they are actually

due to nondeterminism. After configuring KLEE to use state- and

instruction-based limits [43], we run each application twice. When

an application was found to cover different code between runs or

cover the same instruction with a time difference of more than

2min we excluded it from the experiment set. We also excluded ap-

plications that cover no new code after 10min in their main source

file (e.g. echo.c). This reduced the set to 10 applications for our

experiments: comm, csplit, cut, env, join, ln, nl, od, split, and

uniq.

5.2 Methodology for Injecting Bugs

To allow us to evaluate the effectiveness of the instrumentation

strategies and search heuristic of ğ3 in allowing DSE to quickly

confirm an SA report, we required a method for injecting bugs that

are true positives by construction, of varying degrees of complexity.

We argue that the bug injection strategy we present is a reason-

able means of introducing bugs that manifest only when a particular

series of events occurs, giving a static analyser a chance to produce

a report that highlights this series of events in its associated trace.

Many other bug injection strategies are possible; by making our

approach available as an artefact we provide an environment in

which other researchers could experiment with different strategies.

We do not claim that these bugs are representative of real-world

bugs, and emphasise again that we would have preferred to evaluate

the method primarily on real-world bugs, but cannot do so due to

the negative results of the thorough survey described in ğ4.

Type of Injected Bugs. We inject two types of bugs: null-pointer

dereferences and use-after-free bugs. Both types of bugs are in-

troduced at the source-level. A null-pointer dereference bug may

consist of multiple events where an event may involve:

(1) Assigning a pointer to NULL as first event (e.g. p = NULL).

(2) Creating a copy of a pointer (e.g. p = q). Zero or more such

assignments may be present.

(3) Dereferencing a pointer, as the last event.

The events may span multiple procedures and control flow con-

structs. We vary the number of events from 1 to 4. Use-after-free

bugs are similar, involving:

(1) Allocating an object on the heap.

(2) Creating zero or more copies of the pointer that holds the

address of the allocated object.

(3) Freeing the dynamically-allocated memory as the second-to-

last event.

(4) Dereferencing a pointer which points to this freed memory

as the last event.

Selecting Locations for Injecting Bugs.When injecting bugs, we

have two goals: (1) inject bugs that are true positives and (2) inject

bugs that are hard for KLEE to find without any guidance (because
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Figure 3: Percentage of multi-event null-dereference (null)

and use-after-free (uaf) bugs detected by CSA and Infer.

the approach we propose, for using SA information to help a DSE

tool to quickly find a bug, is not necessary if the DSE tool can already

readily find the bug). To find interesting paths along which to inject

our multi-event bugs, we run KLEE on the program in which we

wish to inject bugs for a duration of two hours. This gives us a series

of feasible paths explored by KLEE together with associated inputs

that cause them to be followed, and information about how long

it took KLEE to reach each program statement for the first time.

We randomly selected a number of program statements at which

to inject bugs, restricting to statements that KLEE did eventually

manage to cover, but did not manage to cover during the first 10

minutes of its analysis.

In total, we injected 297 1-event, 632 2-event, 478 3-event, and

357 4-event bugs across all ten benchmark applications. The number

of distinct 1-event bugs is lower than for other counts because a

single statement may be reachable by multiple execution paths,

catering for numerous multi-event bugs.

Figure 3 provides the percentage of multi-event bugs detected

by CSA and Infer. We can make several observations regarding

the effectiveness of the two SA analysers considered. First, CSA

performs significantly better than Infer on these bugs. A possible

explanation for this is that Infer’s analysis is less sophisticated and

precise for C code compared to code in other languages such as

Java. Second, one can see that bugs with more events are harder

to find. Looking at null-pointer dereference bugs, we can see that

more then half of the 1-event bugs are found by both analysers

(with CSA at more than 88%) but both analysers find under 1%

of 3- and 4-event bugs. The performance for use-after-free bugs

has the same trend, although CSA performs very well on both 1-

and 2-event bugs. These results are not surprising, given that bugs

with more events are more complex and hard to find. Although

not necessarily representative of user errors, the bugs we inject are

eminently detectable: they involve analysing simple sequences of

assignments to global variables. We were surprised that CSA and

Infer could not detect more of the multi-step bugs, and believe that

our corpus of injected bugs could prove useful as a resource for

testing the precision and soundness of these static analysers.

For the found bugs, Infer tends to generate shorter traces, typi-

cally in the range of 1ś5 steps, whereas CSA generates longer traces

with median lengths between 10ś20 (maximum length 55). We note

that Infer’s use-after-free traces seem to follow a different format

and contain different overlapping parts, for instance an invalida-

tion part and a use-after-lifetime part. Our prototype does not fully

support such traces as, on the one hand, it is not entirely clear how
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to recover a sequential trace from such reports and, on the other

hand, the use-after-free traces generated in our evaluation did not

seem to require this functionality as all steps pointed to the same

line. Although we would expect a sequential trace to the bug from

a user’s perspective, we acknowledge that this alternative format

could contribute to the shorter traces that we observed and that

the effectiveness of our technique on Infer’s use-after-free traces

could be increased by improving support for these traces.

5.3 Using DSE to Confirm Injected Bugs

For each benchmark, we used our methodology to obtain a set

of up to 40 injected null-pointer dereference bugs and up to 40

use-after-free bugs for every path explored by KLEE. Recall that

we gathered information on how long KLEE took to reach each

statement associated with an injected bug path for the first time.

Since KLEE explores numerous paths, we restrict the number of

injections by allowing only those bugs for which KLEE takes ≥ 10

minutes to reach the last event in the bug. This avoids bugs that

are already reasonably trivial for KLEE to find.

In spite of the above restriction, we inject a large set of bugs

and we wish to identify a subset of diverse bugs to use for our

evaluation of the techniques of ğ3, such that at least one, but ideally

both, of CSA and Infer could find each bug, and such that the time

taken by KLEE to cover the final event in each bug is reasonably

high.

For every Coreutils application, bug type (null-pointer deref-

erence or use-after-free), and an event count 𝑆 (1 ≤ 𝑆 ≤ 4) we

approached this as follows. If there existed at least one injected bug

that both CSA and Infer could detect, we selected the bug among

this set for which the time taken by KLEE to reach the final event

in the bug was maximal. Otherwise, if there existed at least one

injected bug that one of CSA or Infer could detect, we selected from

this set of bugs, again selecting the bug for which the associated

time taken by KLEE to reach the last event was maximal.

For each application we then manually examined the total set

of selected injected bugs, trying to select a diverse set in terms of

the source code locations that they covered. We wished to select a

total of 4 × 2 × 10 = 80 bugs, due to there being 4 different event

counts, 2 types of bugs, and 10 applications. However, CSA and

Infer were not able to detect many 3- and 4-event bugs. Also, for

a few applications, KLEE does not cover enough new instructions

after 10 minutes. As a consequence, we ended up selecting 55 bugs

for evaluation.

Results. Recall that we proposed three strategies for constraining

the search (ğ3.2): (a) Ignore, (b) Require and (c) Try, and two search

heuristics (ğ3.3): (a) Default and (b) Targeted, thereby creating six

configurations with Ignore-Default as the baseline configuration.

Additionally, we add two more modes: Ignore-TargetLast is a special

case of the Targeted heuristic that is configured to only target

the very last step in a trace and ignore intermediate ones. And

Portfolio shows the analysis times that would be achieved if all

other configurations were executed in parallel and independently,

with the portfolio analysis stopping as soon as any configuration

finds the bug. The results for thismeta configuration are synthesised

from the results we gathered for the other configurations.

The Targeted heuristic replaces the coverage-guided search in

KLEE’s default heuristic with our guided exploration of ğ3.3. We

repeated each experiment five times using different random seeds

for KLEE5 and report average timing results, together with the stan-

dard error representing the variability in our data across multiple

runs in Figure 4. The number of bugs found varies across runs (due

to bugs found close to the timeout), hence the ranges above many

bars.

Figure 4 shows a bar plot that compares the eight possible config-

urations in terms of bugs confirmed and total time taken.6 Besides

the Portfolio configuration, Ignore-Targeted, Try-Targeted and Ig-

nore-TargetLast perform the best. The over-restrictive nature of the

Require strategy hurts the performance and also finds fewer bugs.

To our surprise, the Try-Targeted strategy with a speedup of 4.13×

seems to work no better than the Ignore-Targeted strategy which

gives a speedup of 4.09×. To better understand this, we looked at the

percentage of conditions that are feasible in a trace generated by a

static analyser. The percentage is very low for Infer traces (median

0%, maximum of 66.7%) compared to that of CSA traces (median

47.6%, maximum 92.9%). This could explain why Try-Targeted and

Ignore-Targeted strategies are similar in performance for Infer traces.

However, the percentage of feasible conditions for CSA traces is

higher and yet the Try-Targeted strategy does not seem to gain

any performance benefit. We consider this to be a useful negative

result, as we would have expected the conditions emitted by the

SA to be useful in constraining the search. Further investigation

showed us that the conditions in the assume_sa are often already

over-constrained. As a consequence, the path conditions already

imply the conditions in the assume_sa and hence Ignore and Try

are almost identical in our setup. Our data shows that 99.98% of

feasible conditions were already implied by the respective path

constraints.

Even more surprising for us is the result of the Ignore-TargetLast

strategy that performs similar to Ignore-Targeted. Not just the event

conditions are rarely useful, also the intermediate steps seem to be

redundant in many cases. We further ascribe this observation to

two properties of our search heuristic: (1) paths that cannot reach

the final target are terminated such that the DSE engine does not get

lost in irrelevant code paths, and (2) the proposed algorithm (ğ3.3)

compartmentalises the call-graph and guides states on different

paths to the target in round-robin manner instead of getting stuck

as a conventional shortest-distance approach would do.

As expected, the investigation of the Portfolio strategy shows

that the Targeted heuristic across all instrumentation strategies

contributes most runs to the Portfolio result (Ignore: 12-21, Require:

11-13, Try: 9-16). The Default heuristic is favoured by fortune in

a few cases (Ignore: 5-7, Require: 1-3, Try: 2-5) whereas the Ignore-

TargetLast configuration (0 runs) is at best a close second across all

runs. The relatively high number of contributed runs for Require

(Require-Default: 1-3 and Require-Targeted: 11-13) suggests that the

Require strategy occasionally pays off by dramatically pruning the

search space without eliminating the bug. However, the outstanding

5To clarify, random seeds initialise KLEE’s internal random number generator
and do not serve as concrete input.

6Only the time taken by KLEE is reported. CSA/Infer and instrumentation times
are not included because they are insignificant in comparison to the time taken by
KLEE, and because our aim is to confirm bug reports after SA has been performed.
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Figure 4: Total analysis time for KLEE for the injected bugs across all instrumentation strategies and search heuristics, as well

as the Ignore-TargetLast special case and a Portfolio strategy. Numbers of bugs detected are shown above each error bar.

number of timeouts (14-19) and early terminations (13-15) shows

that this strategy fails completely in some cases resulting in an

overall bad performance. Early terminations may occur due to

pruning the search space so much that it becomes very small and

does not contain the bug, whereas timeouts occur when the search

space is either too large and the bug could not be found or the

bug-containing path was pruned away.

6 RELATED WORK

Prior work has proposed several techniques for pruning false pos-

itive reports from the results of SA, including techniques based

on DSE. Our work distinguished itself through its focus on using

out-of-the-box open-source SA tools; being oblivious to the type of

SA report; and taking advantage of the full trace information.

We first discuss some prior approaches that use DSE to con-

firm SA reports. DyTa [25] uses Pex [46] to verify code contract

violations detected by a static analyser. The location and viola-

tion condition associated with the SA report are used to prune

paths that are statically determined not to be able to reach the

bug. SANTE [12] combines slicing and DSE to validate SA reports.

However, the DSE stage is unguided, using the default DFS search

heuristic. Both DyTa and SANTE are presented in short papers

which have no evaluation beyond an illustrative example.

Joshy et al. [31] introduce LCA-based syntactic patching to cre-

ate executable code fragments from static warnings generated by

commercial static analysers. These code fragments are subsequently

tested with different approaches including DSE. Compared to our

approach, the trace information (e.g. iteration count) is mostly dis-

carded and reduced to the source lines reported in the traces.

Li et al. [35] look at the specific problem of validating mem-

ory leak reports produced by a SA using concolic execution. The

approach uses the multiple steps included in the SA report, but

the conditions associated with each step are ignored. While the

approach has similarities to ours, the problem of memory leak vali-

dation has some particularities, which is perhaps why the approach

was not applied to other types of SA bug reports.

Gao et al. [24] look at the problem of validating buffer overflow

reports. It also uses multiple trace steps, but the conditions asso-

ciated with each step are ignored. The main idea is to statically

generate all the possible paths that follow the trace and then, dur-

ing DSE, terminate any path that does not follow one of them. The

evaluation shows that only a few such paths are created per bug

report, while we would have expected a huge number. Furthermore,

the evaluation misses essential information needed to understand

and reproduce the experiments, e.g. related to the fault injection

methodology, benchmark running times, and KLEE configuration.

We have carefully examined all the papers above to see if we can

successfully use their benchmarks in our work. With the exception

of the recent work by Joshy et al. [31], which uses commercial SA

tools (see ğ4), we did not find any usable benchmarks, reinforcing

our findings regarding the mismatch between the bugs found by

SA and DSE, especially with respect to open-source tools.

Brown et al. [4], Feist et al. [20] and Babić et al. [1] combine

custom static checkers or a dedicated SA with DSE to efficiently

find vulnerabilities. Writing custom static checkers or modifying

existing SA tools can indeed lead to better synergy with DSE. How-

ever, an explicit goal of our work is to use popular out-of-the-box

SA tools and understand how the information they provide can be

used by a DSE tool. While we hope static analysers will improve

to provide better information to help DSE confirm the generated

reports, demanding such changes is likely unrealistic.

Work on directed symbolic execution [19, 37, 38, 45, 47] aims to

construct cases that reach a particular program statement. There-

fore, they could also be used to generate test cases that reach the

location of an SA report. These techniques often use search heuris-

tics which are similar to the one used by our approach [37, 38],

except that our heuristic is designed to use multiple steps rather

than a single target location. However, our evaluation shows that

using solely the target location seems to be as effective as using

the full trace information, so until this changes, directed symbolic

execution can be competitive for validating SA reports.

Research on reproducing field failures sometimes involves pro-

cessing traces, similar to SA reports, and these techniques often use

DSE to reproduce an input that follows the trace [30, 48]. However,

field traces do not include event information and thus our condition

guidance strategies are not relevant.

In addition to DSE, other techniques have been used to validate

SA reports, such as SMT-based refutation [42], deductive verifica-

tion [39], bounded model checking [41] and random testing [17].
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Beyond the problem of validating false positives, SA and DSE

have been combined effectively for several problems, including bug

finding and verification [2, 13, 28, 49].

7 DISCUSSION AND CONCLUSIONS

We have presented our experience investigating a novel method

for integrating traces from two off-the-shelf static analysers into

dynamic symbolic execution, with the aim of leveraging DSE to

confirm true positive bug reports. Our investigation has led to two

interesting negative results:

C/C++ benchmarks suitable for analysis with DSE tools are

not handled well by CSA and Infer. As described in ğ4, we un-

dertook a thorough survey of the C/C++ benchmarks that have been

used over recent years in works that evaluate the KLEE DSE tool.

Our experience applying CSA and Infer to these benchmarks is that

they find very few real bugs, despite the fact that numerous known

bugs are present. We hope this serves as a useful call to arms for

the SA community: SA tools will inevitably be somewhat imprecise,

but our results point to a good set of challenge benchmarks that

could be used to guide the tuning of such tools.

The traces generated by CSA and Infer are not useful for

accelerating DSE. Our evaluation in ğ5 shows that, at least with

respect to the techniques we have presented, the traces that CSA

and Infer produce are not useful for accelerating DSE. They provide

no, or only marginal benefit to the speed with which bugs can

be confirmed compared with simply providing DSE with the bug

location. This may not serve as a call to arms to the SA community,

who are presumably mainly interested in whether the traces their

tools generate can be understood by humans. However, the idea of

having a static analyser generate an alternative, tool-friendly trace

for consumption by another program analysis tool, is a promising

direction for future research.

As well as investigating the future directions associated with

these negative results, another area for future work would be to

widen the scope of our investigation to consider other analysis tools,

and analysers for other programming languages. We restricted to

open-source analysers in this work because it is not always straight-

forward to get licenses for commercial analysers, and publicly re-

porting on the results that commercial analysers produce is often

not allowed. Nevertheless, it would be interesting to see whether

commercial static analysers fare better on the benchmarks we have

considered compared with the open-source analysers that we tried.
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